Dynamique des Structures

Abdellatif MEGNOUNIF

E-mail: abdellatif_megnounif@yahoo.fr

Partie 2: Systèmes à plusieurs DDL.

Application 14

Vibrations Forcées Analyse Spectrale

Objectif

Le but de cette application est de :

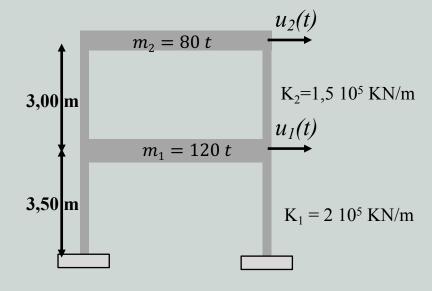
- Calculer les réponses dynamiques d'un SPDDL pour des systèmes amortis ou non amortis
- Utilisation d'un spectre de réponse pour calculer les réponses dynamiques.
- Calculer les efforts à la base.

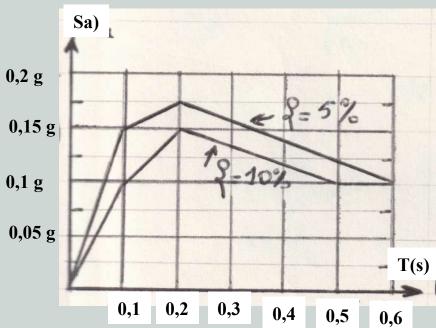
Exemple 1

On donne le portique à 02 niveaux montré en figure ci-contre. La structure sera construite dans une zone sismique dont le spectre accélération est donnée en figure.

- i) Calculer les fréquences et modes propres de vibration.
- ii) Calculer les déplacements relatifs maxima par la méthode spectrale.
- iii) Calculer l'effort tranchant et le moment de flexion à la base.

On donne : $\xi_1 = 5\%$ et $\xi_2 = 10\%$





Rappel

$$M\ddot{U} + C\dot{U} + KU = -M\ddot{U}_g$$

La méthode d'analyse spectrale

Méthode d'analyse spectrale

- Force extérieure différente de zéro. Appliquée sous forme d'excitation du support.
- L'excitation du support souvent exprimée sous forme de graphe d'accélération du support en fonction du temps.
- La méthode constitue la base du calcul sismique des structures dans le cas de structures particulières (là où les méthodes statiques équivalentes ne peuvent pas être appliquées).
- La démarche est la même que précédemment par analyse modale en superposant les réponses obtenues à partir d'un spectre spécifique.
- On travaille généralement avec des spectres de réponse.
- Recommandé dans la plupart des règlements parasismiques ayant leur propre spectre de calcul.

$$M \ddot{U} + C \dot{U} + K U = -M \ddot{U}_{g}$$

U: déplacement relatif

On découple avec $U = \Phi Y$ alors $\ddot{U} = \Phi \ddot{Y}$

$$\phi_n^T M \phi_n \ddot{y}_n + \phi_n^T C \phi_n \dot{y}_n + \phi_n^T K \phi_n y_n = -\phi_n^T M \ddot{U}_g$$

Ou bien

$$\ddot{y}_n + 2\xi_n \omega_n \dot{y}_n + \omega_n^2 y_n = \frac{P_n}{M_n}$$
 (1)

Avec:
$$p(t) = -M\ddot{U}_g$$

 $P_n = \phi_n^T p(t)$

Avec:
$$p(t) = -M\ddot{U}_g \\ P_n = \phi_n^T p(t)$$

$$R_n = \phi_n^T V \phi_n \\ P_n = \phi_n^T P(t)$$

$$R_n = \phi_n^T V \phi_n \\ P_n = \phi_n^T V \phi_n \\ P_n = \phi_n^T V \phi_n$$

$$R_n = \Phi_n^T V \phi_n \\ P_n = \phi_n^T V \phi_n$$

$$R_n = \Phi_n^T V \phi_n \\ P_n = \Phi_n^T V \phi_n$$

$$R_n = \Phi$$

Sous une autre forme, sachant que le terme de droite s'écrit:

$$-\phi_n^T M \ddot{U}_g = -\phi_n^T M \{\Delta\} \ddot{u}_g$$

$$\ddot{y}_n + 2\xi_n \omega_n \dot{y}_n + \omega_n^2 y_n = \frac{P_n}{M_n} = -\phi_n^T M \{\Delta\} \ddot{u}_g$$
 (2)

Les termes à droite de l'équation (1) sont tous proportionnels à l'accélération du support (Même fonction) alors que dans le cas général, p(t) peut changer d'un DDL à un autre.

Réponse due à une excitation du support

$$\ddot{y}_n + 2\xi_n \omega_n \dot{y}_n + \omega_n^2 y_n = \frac{P_n}{M_n} = -\phi_n^T M \{\Delta\} \ddot{u}_g$$
 (2)

En posant

$$\Gamma_n = \phi_n^T M\{\Delta\}$$

 $\Gamma_n = \phi_n^T M\{\Delta\}$ Γ_i : Facteur de participation modale **(3)**

On aura:

$$\ddot{y}_n + 2\xi_n \omega_n \dot{y}_n + \omega_n^2 y_n = -\Gamma_n \ddot{u}_g$$
 (4)

Avec:

Pour des modes propres normalisés

$$\Gamma_i = \sum_{j=1}^n m_j \emptyset_{ji}$$
 i=1, 2, ...,n

Pour le cas général

$$\Gamma_n = \frac{\phi_n^T M\{\Delta\}}{\phi_n^T M \emptyset_n} = \frac{L_n}{M_n} \qquad L_n = \phi_n^T M\{\Delta\}$$
$$M_n = \phi_n^T M \emptyset_n$$

$$M_n = \phi_n^T M \phi_n$$

$$\Gamma_i = \frac{\sum_{j=1}^n m_j \emptyset_{ji}}{\sum_{j=1}^n m_j \emptyset_{ji}^2}$$
 i=1, 2, ...,n

(6)

$$\ddot{y}_n + 2\xi_n \omega_n \dot{y}_n + \omega_n^2 y_n = -\Gamma_n \ddot{u}_g \qquad (4)$$

- L'équation (4) est un système d'équations linéaires découplées.
- Chaque terme de cette équation représente S1DDL.
- On peut donc utiliser n'importe quelle méthode pour calculer la réponse de chaque DDL.
- Soit la méthode de l'intégrale de Duhamel:

Soit, par exemple pour des CI nulles et système amorti

$$y_j(t) = -\frac{\Gamma_j}{m_i \omega_{aj}} \int_0^t \ddot{u}_g(\tau) e^{-\xi \omega_j (t-\tau)} sin(\omega_{aj}(t-\tau)) d\tau$$
 (7)

Avec (6),
$$\Gamma_j = \frac{\phi_j^T M\{\Delta\}}{\phi_i^T M \phi_i}$$

 $\Gamma_j = \frac{\phi_j^I M\{\Delta\}}{\phi_i^T M \phi_i}$ Le déplacement U_j, dans le mode « j » s'écrit:

En posant
$$y_j(t) = \Gamma_j q_j(t)$$
 (8)

On aura:
$$U_j = \phi_j y_j = \Gamma_j \phi_j q_j(t)$$
 (9)

 $q_i(t)$ est solution de l'équation

$$\ddot{q}_j + 2\xi_j \omega_j \dot{q}_j + \omega_j^2 q_j = -\ddot{u}_g \tag{10}$$

Solution temporelle

$$\Gamma_j = \frac{\phi_j^T M\{\Delta\}}{\phi_j^T M \emptyset_j}$$
 Si on calcule

$$\sum_{j=1}^{n} \Gamma_{j} \, \emptyset_{j} \qquad \ref{eq:sigma}$$

On aura:

Due à l'orthogonalité par rapport à M

$$\boldsymbol{\phi_i^T M} \sum_{i=1}^n \Gamma_j \, \emptyset_j = \boldsymbol{\phi_i^T M} \emptyset_i \Gamma_i$$

$$\boldsymbol{\phi_i^T M} \sum_{j=1}^n \Gamma_j \, \emptyset_j = \boldsymbol{\phi_i^T M} \emptyset_i \Gamma_i$$

$$\Gamma_i = \frac{\phi_i^T M\{\Delta\}}{\phi_i^T M \phi_i}$$

$$\sum_{j=1}^{n} \Gamma_{j} \, \emptyset_{j} = \{\Delta\}$$

Propriété importante des coefficients de participation

Une fois le réponse $q_i(t)$ de chaque mode connue, le déplacement total sera:

$$U(t) = \sum_{j=1}^{n} U_j = \sum_{j=1}^{n} \Gamma_j \, \phi_j \, q_j(t)$$
 (12)

Calcul des valeurs maximales de la réponse

On cherche d'abord la valeur maximale par mode :

i. Valeur maximale par mode

On est passé de $y_j(t)$ solution de $\ddot{y}_n + 2\xi_n \omega_n \dot{y}_n + \omega_n^2 y_n = -\Gamma \ddot{u}_g$ à $q_j(t)$ $(y_j(t) = \Gamma_j q_j(t))$ solution de l'équation $\ddot{q}_j + 2\xi_j \omega_j \dot{q}_j + \omega_j^2 q_j = -\ddot{u}_g$

Solution de « q_i(t) » par l'intégrale de Duhamel

$$q_j(t) = -\frac{1}{\omega_{aj}} \int_0^t \ddot{u}_g(\tau) e^{-\xi \omega_j (t-\tau)} sin(\omega_{aj}(t-\tau)) d\tau$$
 (13)

Généralement, on n'a pas besoin de toute la réponse due à l'excitation, seul le maximum est intéressant:

On utilisera donc des spectres de réponse directement (Voir chapitre 7).

Calcul des valeurs maximales de la réponse

i. Valeur maximale par mode

On rappelle le spectre de réponse en déplacement :

$$S_{D}(\omega_{j}, \xi_{j}) = max \left[-\frac{1}{\omega_{aj}} \int_{0}^{t} \ddot{u}_{g}(\boldsymbol{\tau}) e^{-\xi \omega_{j}(t-\boldsymbol{\tau})} sin(\omega_{aj}(t-\tau)) d\boldsymbol{\tau} \right]$$
 (14)

On peut aussi avoir le spectre de réponse en pseudo-accélération

$$S_{A}(\omega_{j}, \xi_{j}) = \omega_{j}^{2} S_{D}(\omega_{j}, \xi_{j})$$
 (15)

$$y_{jmax} = \Gamma_j S_D(\boldsymbol{\omega}_j, \boldsymbol{\xi}_j) = \frac{\Gamma_j}{\omega_j^2} S_A(\boldsymbol{\omega}_j, \boldsymbol{\xi}_j) = \frac{L_j}{M_j \omega_j^2} S_A(\boldsymbol{\omega}_j, \boldsymbol{\xi}_j) = \frac{L_j}{M_j$$

Le déplacement maximal sera alors (9): (Si les temps sont les mêmes

$$U_{jmax} = \phi_j y_{jmax} = \Gamma_j \phi_j q_{jmax}(t) = \Gamma_j \phi_j S_D(\omega_j, \xi_j)$$

$$U_{jmax} = \phi_j y_{jmax} = \Gamma_j \phi_j q_{jmax}(t) = \frac{\Gamma_j}{\omega_j^2} \phi_j S_A(\omega_j, \xi_j)$$

(17)

Et l'effort maximal sera alors :

Calcul des valeurs maximales de la réponse

Si les temps ne sont pas les mêmes

Une fois les réponses maximales par mode sont calculées, on calcul la réponse maximale totale par superposition

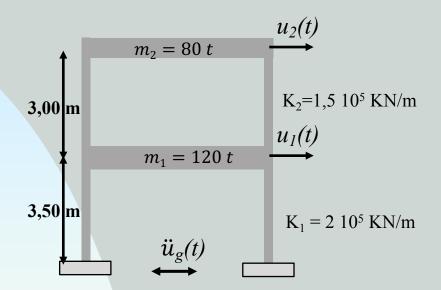
$$u_{imax} = \sum_{j=1}^{n} \left| \Gamma_{j} \phi_{ij} S_{Dj} \right|$$

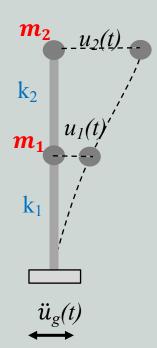
$$u_{imax} = \sum_{j=1}^{n} |\Gamma_j \phi_{ij} S_{Dj}| \qquad \ddot{u}_{imax} = \sum_{j=1}^{n} |\Gamma_j \phi_{ij} S_{Aj}|$$

(SRSS).
$$u_{imax} = \sqrt{\sum_{j=1}^{n} (\Gamma_j \phi_{ij} S_{Dj})^2} \qquad \ddot{u}_{imax} = \sqrt{\sum_{j=1}^{n} (\Gamma_j \phi_{ij} S_{Aj})^2}$$

$$\ddot{u}_{imax} = \sqrt{\sum_{j=1}^{n} \left(\Gamma_{j} \phi_{ij} S_{Aj}\right)^{2}}$$

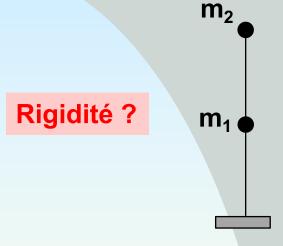
Notre cas?



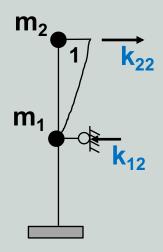


- ✓ Poutre très rigide.
- ✓ Masse totale concentrée sur chaque plancher.
- ✓ Poteaux sans masses et ne se déforment pas verticalement, ni rotationnellement.
- ✓ Seuls DDLs, possibilité de flexion des poteaux, de façon dépendante entre les 02 niveaux.

Matrices ? (Attention à l'ordre de la numérotation)



$$m_2$$
 k_2
 m_1
 k_1
 k_{11}



$$[K] = \begin{bmatrix} k_{11} & k_{21} \\ k_{12} & k_{22} \end{bmatrix} \qquad k_{21} = -k_2$$

$$k_{11} = k_1 + k_2$$

$$k_{12} = - k_2$$

$$k_{21} = -k_2$$

$$k_{22} = k_2$$

$$[K] = \begin{bmatrix} k_1 + k_2 & -k_2 \\ -k_2 & k_2 \end{bmatrix}$$

$$[K] = \begin{bmatrix} 2 & 105 + 1,5 & 105 & -1,5 & 105 \\ -1,5 & 105 & 1,5 & 105 \end{bmatrix} KN/m = \begin{bmatrix} 3,5 & -1,5 \\ -1,5 & 1,5 \end{bmatrix} 105 KN/m$$

$$[M] = \begin{bmatrix} m_1 & 0 \\ 0 & m_2 \end{bmatrix}$$

Masse?
$$[M] = \begin{bmatrix} m_1 & 0 \\ 0 & m_2 \end{bmatrix} \quad [M] = \begin{bmatrix} 120 & 0 \\ 0 & 80 \end{bmatrix} (t)$$

Calcul des fréquences et modes propres de vibration ?

$$\det|\mathbf{K} - \omega^2 \mathbf{M}| = 0$$

D'où:
$$\det \begin{vmatrix} 3.5 \ 10^5 - \lambda \ 120 & -1.5 \ 10^5 \\ -1.5 \ 10^5 & 1.5 \ 10^5 - \lambda \ 80 \end{vmatrix} = 0$$

Avec «
$$\lambda = \omega_i^2$$
 »

Solutions:

$$\lambda_1 = \omega_1^2 = 778,732$$
 D'où: $\omega_1 = 27,906 \frac{rd}{s}$ $T_1 = 0,225 s$
 $\lambda_2 = \omega_2^2 = 4012,935$ **D'où**: $\omega_2 = 63,348 \frac{rd}{s}$ $T_2 = 0,099 s$

Modes propres ?

Pour chaque
$$\omega_i$$
 on résout le système $(K - \omega^2 M) \{\phi\} = 0$

i.
$$\omega_i = \omega_1 = 27,906 \, rd/s$$

$$\begin{bmatrix} 3,5 \ 10^5 - 778,732 \ 120 & -1,5 \ 10^5 \\ -1,5 \ 10^5 & 1,5 \ 10^5 - 778,732 \ 80 \end{bmatrix} \begin{Bmatrix} \boldsymbol{\phi}_{11} \\ \boldsymbol{\phi}_{21} \end{Bmatrix} = 0$$

$$\{ \begin{array}{c} \{ \phi_1 \} = \left\{ \begin{array}{c} \phi_{11} \\ \phi_{21} \end{array} \right\} = \left\{ \begin{array}{c} 0,5847 \\ 1,0 \end{array} \right\}$$

ii.
$$\omega_i = \omega_2 = 63,348 \ rd/s$$

ii.
$$\omega_i = \omega_2 = 63,348 \, rd/s$$

$$\begin{bmatrix} 3,5 \ 10^5 - 4012,935 \ 120 & -1,5 \ 10^5 \ -1,5 \ 10^5 & 1,5 \ 10^5 - 4012,935 \ 80 \end{bmatrix} \begin{bmatrix} \boldsymbol{\phi}_{12} \\ \boldsymbol{\phi}_{22} \end{bmatrix} = 0$$

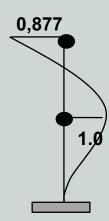
$${\color{red} \{ \color{red} \phi_2 \} = \left\{ \begin{matrix} \phi_{12} \\ \phi_{22} \end{matrix} \right\} = \left\{ \begin{matrix} 1 \\ -0,877 \end{matrix} \right\} }$$

Equation du mouvement

Ainsi

$$\{ \phi_1 \} = \{ \phi_{11} \\ \phi_{21} \} = \{ 0, 5847 \\ 1, 0 \}$$

$$\{ \boldsymbol{\phi_2} \} = \left\{ \begin{array}{c} \boldsymbol{\phi_{12}} \\ \boldsymbol{\phi_{22}} \end{array} \right\} = \left\{ \begin{array}{c} \mathbf{1} \\ -\mathbf{0}, 877 \end{array} \right\}$$



Finalement

Matrice spectrale

$$\mathbf{\Omega} = \begin{bmatrix} 27,906 & \mathbf{0} \\ \mathbf{0} & 63,348 \end{bmatrix}$$

Matrice Modale

$$\mathbf{\Phi} = \begin{bmatrix} 0.5847 & \mathbf{1} \\ \mathbf{1} & -0.877 \end{bmatrix}$$

Valeur maximale par spectre:

$$y_{jmax} = \Gamma_j S_D(\omega_j, \xi_j) = \frac{\Gamma_j}{\omega_j^2} S_A(\omega_j, \xi_j) = \frac{L_j}{M_j \omega_j^2} S_A(\omega_j, \xi_j)$$

0,2 g

0,17 g 0,15 g

0,1 g

0,05 g

$$L_j = \boldsymbol{\phi}_j^T \boldsymbol{M} \{ \Delta \}$$

T(s)

0.6

Mode 1
$$\lambda_1 = \omega_1^2 = 778,732$$

$$M_{1} = \{0,5847 \quad 1,0\} \begin{bmatrix} \mathbf{120} & \mathbf{0} \\ \mathbf{0} & \mathbf{80} \end{bmatrix} \begin{cases} 0,5847 \\ 1,0 \end{cases} = \mathbf{121,025} (t)$$

$$L_{1} = \{0,5847 \quad 1,0\} \begin{bmatrix} \mathbf{120} & \mathbf{0} \\ \mathbf{0} & \mathbf{80} \end{bmatrix} \begin{Bmatrix} 1,0 \\ 1,0 \end{Bmatrix} = \mathbf{150,164} (t)$$

$$S_A(T_i, \xi_i) = S_A(0, 225, 5\%) = 0.17 g$$

$$y_{1max} = \frac{L_j}{M_j \omega_j^2} S_A(\omega_j, \xi_j) = \frac{150, 164}{121, 025, 778, 732} 0, 17 g$$

$$y_{1max} = 2,657 \ mm$$

Mode 2 $\lambda_2 = \omega_2^2 = 4012,935$

$$M_2 = \{1,0 \quad -0.877\} \begin{bmatrix} 120 & 0 \\ 0 & 80 \end{bmatrix} {1,0 \\ -0.877} = 181,53 (t)$$

$$L_2 = \{1,0 \quad -0.877\} \begin{bmatrix} \mathbf{120} & \mathbf{0} \\ \mathbf{0} & \mathbf{80} \end{bmatrix} \begin{Bmatrix} 1,0 \\ 1,0 \end{Bmatrix} = 49.84 \ (t)$$

$$S_A(T_i, \xi_i) = S_A(0, 1, 10\%) = 0,10 g$$

$$y_{2max} = \frac{L_j}{M_j \omega_j^2} S_A(\omega_j, \xi_j) = \frac{49,84}{181,53 \ 4012,935} 0,10 g$$

0,2 0,3 0,4 0,5

$$y_{1max} = 2,657 \, mm$$

$$y_{2max} = 0,067 \, m_1$$

$$y_{1max} = 2,657 \ mm$$
 $y_{2max} = 0,067 \ mm$ $\Phi = \begin{bmatrix} 0.5847 & 1 \\ 1 & -0.877 \end{bmatrix}$

En considérant les 02 modes

AVS

Méthode AVS :
$$u_{imax} = |\emptyset_{i1}y_{1max}| + |\emptyset_{i2}y_{2max}| + ... + |\emptyset_{ii}y_{imax}| + ... + |\emptyset_{in}y_{nmax}|$$

$${u_{1max} \brace u_{2max}} = {|\emptyset_{11} y_{1max}| + |\emptyset_{12} y_{2max}| \brace |\emptyset_{21} y_{1max}| + |\emptyset_{22} y_{2max}|} = {0,5847 \ 2,657 + 10,067 \brace 1 \ 2,657 + 0,5847 \ 0,067} = {1,621 \choose 2,696} (mm)$$

$$\{F_s\} = \begin{bmatrix} 3,5 & -1,5 \\ -1,5 & 1,5 \end{bmatrix} 10^5 \begin{Bmatrix} 1,621 \\ 2,696 \end{Bmatrix} 10^{-3} = \begin{Bmatrix} 162,95 \\ 161,25 \end{Bmatrix} (KN)$$

L'effort de cisaillement total à la base sera:

$$V_b = F_{s1} + F_{s2} = 162,95 + 161,25 = 324,2 \text{ KN}$$

Le moment de flexion

$$\{M_f\} = F_{s1}h1 + F_{s2}h2$$

$$M_f = 162,95 \ 3,5 + 161,25 \ 6,5 = 1618,45 \ KN. m$$

En considérant les 02 modes

SRSS

Méthode
$$y = -\sqrt{(\phi, y)^2 + (\phi, y)^2}$$

Méthode SRSS:
$$u_{imax} = \sqrt{(\emptyset_{i1}y_{1max})^2 + (\emptyset_{i2}y_{2max})^2 + \dots + (\emptyset_{ii}y_{imax})^2 + \dots + (\emptyset_{in}y_{nmax})^2}$$

$$\begin{cases} u_{1max} \\ u_{2max} \end{cases} = \begin{cases} \sqrt{(\emptyset_{11}y_{1max})^2 + (\emptyset_{12}y_{2max})^2} \\ \sqrt{(\emptyset_{21}y_{1max})^2 + (\emptyset_{22}y_{2max})^2} \end{cases} = \begin{cases} \sqrt{(0.5847 \ 2.657)^2 + (1 \ (0.067 \ (-0.877))^2} \\ \sqrt{(1 \ 2.657)^2 + (0.067 \ (-0.877))^2} \end{cases} = \begin{cases} 1.555 \\ 2.658 \end{cases} (mm)$$

$$F_s = K U = K\Phi Y = \omega_i^2 M\Phi Y \quad \{F_s\} = \begin{bmatrix} 3.5 & -1.5 \\ -1.5 & 1.5 \end{bmatrix} 10^5 \begin{Bmatrix} 1.555 \\ 2.658 \end{Bmatrix} 10^{-3} = \begin{Bmatrix} 145.55 \\ 165.45 \end{Bmatrix} (KN)$$

L'effort de cisaillement total à la base sera:

$$V_h = F_{s1} + F_{s2} = 145.55 + 165.45 = 311.0 \, KN$$

Le moment de flexion

$$\{M_f\} = F_{s1}h1 + F_{s2}h2$$

 $M_f = 145,55 \quad 3,5 + 165,45 \quad 6,5 = 1584,85 \text{ KN. m}$

Merci. Fin de l'Application 14

